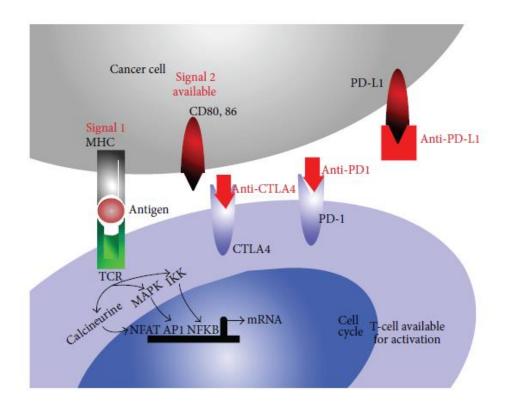
58th ASH 2016 SAN DIEGO CA

The best of ASH

Immunotherapy

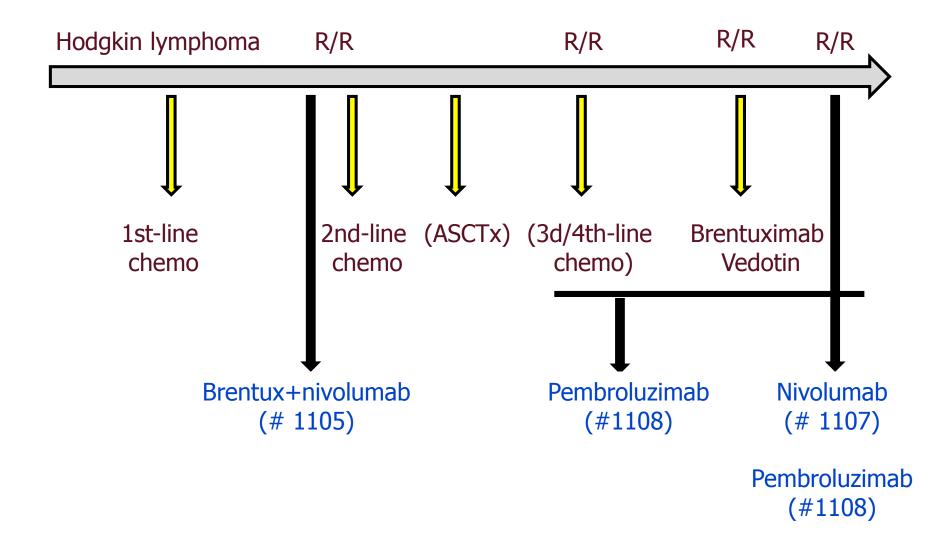
- PD-1/PD-L1 inhibition
- CART cells


CRISPR Cas technology

Selected oral abstracts

- Presidential session
- Late breaking abstracts
- "Best of" session

Checkpoint inhibition

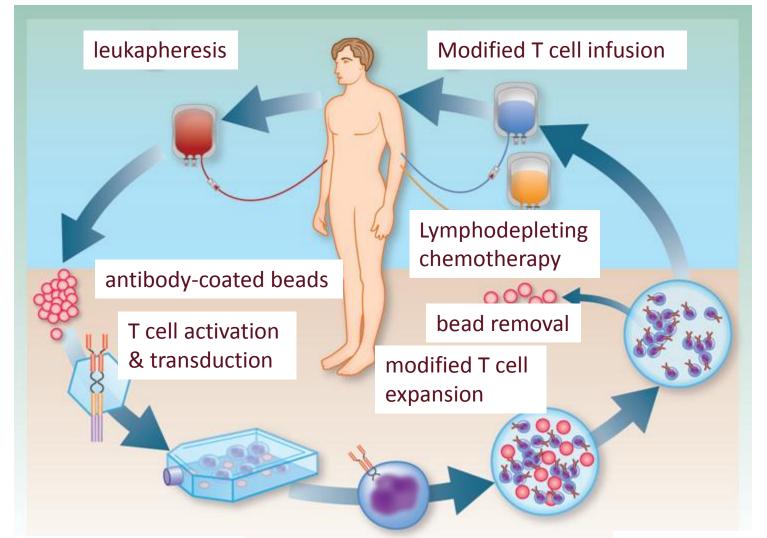

Ipilimumab (anti-CTLA4) Tremelimomab (anti-CTLA4) Pidilizumab (anti-PD1) Nivolumab (anti-PD1) Pembroluzimab (anti-PD1) Atezolimumab (anti-PD-L1) Durvalumab (anti-PD-L1) Avelumab (anti-PD-L1)

Combinations with other monoclonal antibodies under investigation

- UTOMILUMAB, URELUMAB: anti-CD137 \rightarrow stimulation of T cell cytotoxicity, ADCC
- Cp870-893, DACETUZUMAB, LUCATUMUMAB: anti-CD40 → T cell activation
- MOGAMULIZUMAB: anti-CCR4 (developed for ATL) → Treg depletion

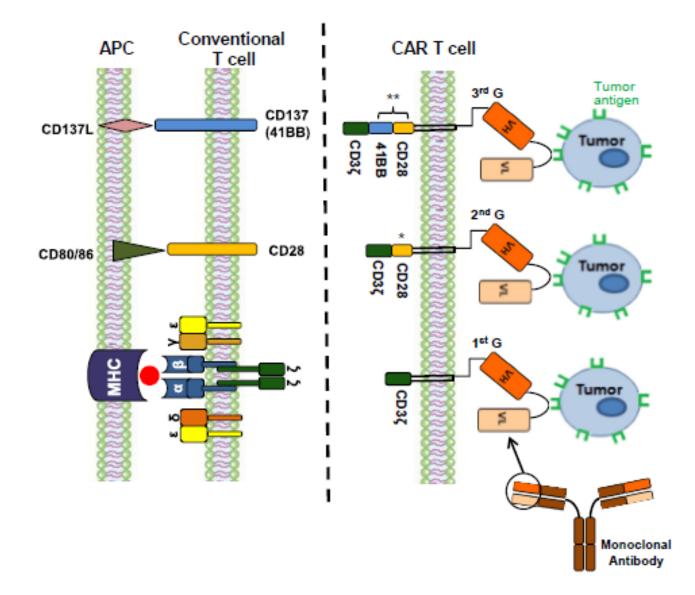
Scientific Workshop on Tumor Immune Interactions in Lymphoid Malignancies

Checkpoint inhibition in Hodgkin lymphoma



Checkpoint inhibitors in Hodgkin lymphoma

Patients	Regimen	Efficacy	Toxicity	Abstr
N=80 PD after Brentux after failed autoTx	NIVO (3 mg/kg) q2wks (Checkmate 205B)	CR 8% PR 60% Median duration = 13 mths	Fatigue (28%), infusion reaction (20%), arthralgia (15%) rash (15%); few SAE.	#1110
N=31 PD after Brentux after failed autoTx	PEMBRO (10mg/kg/2wks)	CR 16% PR 49% 70% of responses ctd > 6 mths	Hypothyroidism/ thyroiditis (20%) GIT (15%) Pneumonitis (10%)	#1108
N=210 R/R 71% prior Brentux	PEMBRO fixed dose 200 mg/2wks (Keynote-087)	ORR 60%-70% 80% of responses durable	Pyrexia (11%), hypothyroidism (10.5%), diarrhea (7%), fatigue (7%), headache (6%), rash (6%), nausea (6%)	#1107
N=25 R/R after standard first line	Brentux (1.8 mg/kg) + NIVO (3 mg/kg) q3wks (fase 1/2)	6/6 ORR	13% grade 3 AE, 1 pt SAE (fatigue, nausea, rash, dyspnea, myalgia, pruritus)	#1105


CART cell therapy

Lymphodepletion: e.g. fludarabine+cyclophosphamide

Beads: e.g. anti-CD3/CD28 Transduction: lentiviral vector Preparation: 6-20 days

CART cells

CART cells in R/R ALL

Patients	Regimen	Efficacy	Toxicity	Abstract
N=30 Prior alloSCT (18) or CART (11); CNS (6)	<u>Humanized</u> anti- CD19 (CTL119)	87% CR; 100% CR if no prior CART	Severe CRS 4; encephalopathy 5; seizures 4	#217
N=53	Lymphodepletion Disease-burden adapted	61% CR (90% MRD-); Median LFS responders= 18 mths Most had alloSCTafter CART	Severe CRS 13.5%; 10% severe neurotoxicity	#218
- Tenkemia Free Surviva Tenkemia Free Surviva Days afte	HSCT No HSCT p=0.0006 650 975 1300 er CAR Infusion			

CART cells in R/R ALL

Patients	Regimen	Efficacy	Toxicity	Abstract
N=43	CD4/CD8 selected CART	93% CR (MRDneg) 51% LFS at 12 mths	Severe CRS 23%; Severe CNS 21%	#219
N=34 Multicenter registration trial CTL019*	Lymphodepletion disease-burden adapted	83% CR (MRD-);	Severe CRS 44%; 21% severe neurotoxicity	#221
N=125 Multicenter China	4th generation: CD19/CD28/ CD137/CD27/ CD3zeta-iCasp9 (=4SCAR19)	CR91% (<50%BMBL) CR76% (>50%BMBL)	20% severe CRS in high tumor burden pts	#587

*Novartis

CART cells in R/R ALL: summary

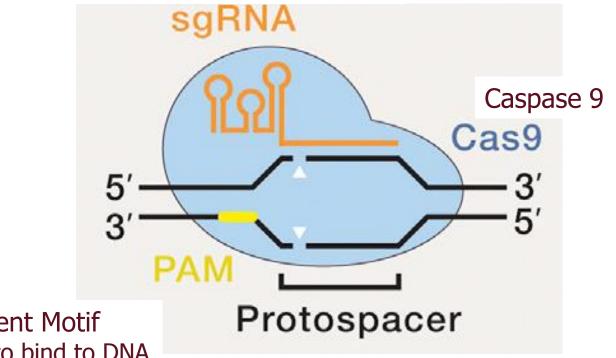
- Very high response rates + high quality reponses in advanced ALL (# 217, #218, #219, #221, #587)
- > Most patients relapse due to
 - Emergence of CD19 neg ALL
 - Exhaustion of CART
 - Anti-mouse reactivity
 - Related to CD19 antigen burden in BM at time of lymphodepletion
- > Kinetics of CART after infusion important for efficacy
 - Rapid initial expansion and slower decay (#220)
- Best results if used as bridge to alloTx (#219)
- > Severe CRS and CNS toxicities are observed 20-40%
- Technical advances
 - CD4/CD8 selected CART
 - Fully humanized CART
 - Anti-CD22 (# 650)
 - IL-18 secreting CART (#816)

CART cells in ibrutinib refractory CLL

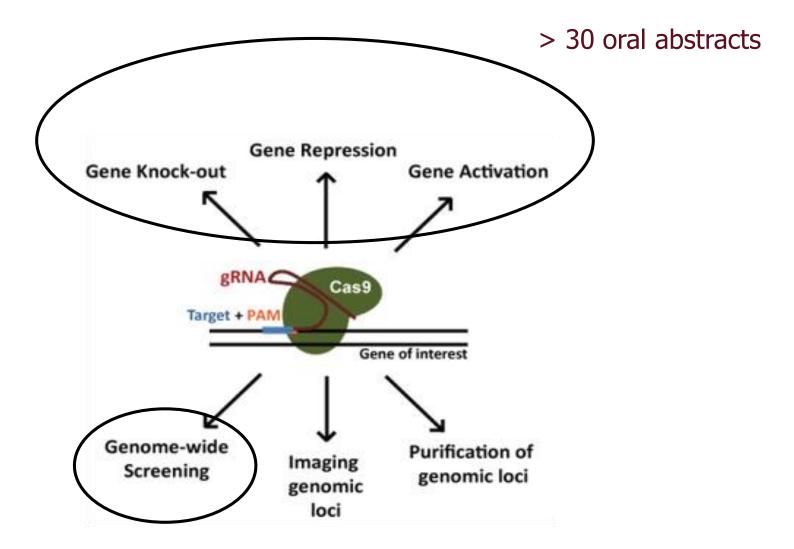
- > Anti-CD19 CART cells from CD4+ and CB8+ T cell subsets
 - N = 18 pts very advanced B-CLL (3-9 lines, 3 alloTx)
 - 11 were ibrutinib refractory, 3 inbrutinib intolerant, 4 venetoclax intolerant
 - 12 complex karyotype, 2 CNS disease
- > Lymphodepletion with cyclophosphamide + fludarabine
- > Most received 2x 10 exp6 CART cells
 - 4 received second cycle at higher cell doses
- > ORR = 76% (8 PR and 5 CR)
 - Higher peak percentages of CD8+ CART cells observed in CR pts
 - Less response in nodal sites
 - CRs were stable at 8+ mths
- > 4 grade 3/4 CRS and 4 grade 3 neurotoxicity

ZUMA-1 trial: CART cells in refractory DLBCL

- > Multicenter (n = 22) trial
- > 2x 10exp6 anti-CD19 CART (KTE-C19)
- Prior cyclophosphamide 500 mg/m² + fludarabine 30 mg/m² x 3 days
- > 51 patients eligible for analysis: 78% refractory, 20% relapse < 12 mths after ASCTx, 61% ≥ 3 lines prior therapy
- > Average turn around time = 17.4 days
- > ORR = 76% (47% CR and 29% PR), 92% during first month
- > 39% had ongoing results at 3 mths
- > \geq 3 AEs were cytopenias, encephalopathy 24%, CRS 20%
- > Peak expansion after infusion associated with ongoing response


#LBA-6

CRISPR Cas


<u>Clustered Regularly Interspaced Short Palendromic Repeat</u>

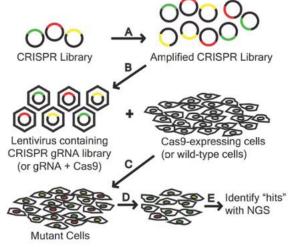
Single guide RNA Targets CAS9 to specific genome locus (protospacer)

Protospacer Adjacent Motif Necessary for Cas9 to bind to DNA

CRISPR for "genome editing"

CRISPR oral abstracts

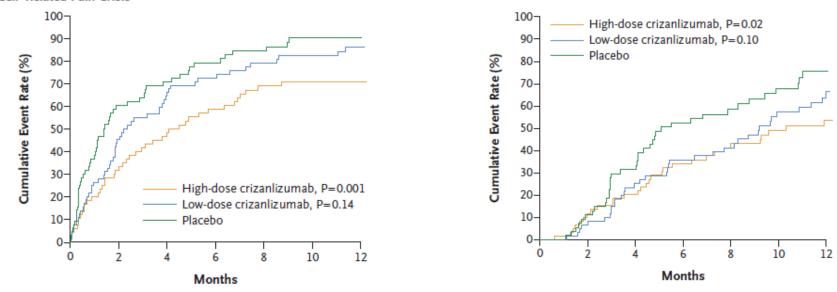
- Study function of genes (by KO or KI) or DNA regions in cell lines +/mouse models (e.g. xenograft) or iPS
 - **PAX5** function in transformed **B cells** (#437)
 - Create models of malignant hematopoiesis by multiplex gene (DNMT3, TET2, FLT3, ..) editing (#741)
 - Create CD33 knock outs before CART (anti-CD33) treatment of AML (#1000)
 - Examine properties of mutated SRSF2 in MDS (#962)
 - Study function of **SETD2** in normal and **leukemic hematopoiesis** (#1055)
 - Study function of mutant CALR (#954)
 - Investigating BCR downstream pathways (e.g. AKT) to develop biomarker-guided therapeutic strategies B cell neoplasms (#779)
 - Identify mutated PPM1D as key driver for therapy-related MDS and AML and assessing "drugability" (#740)
 - Study role of mutated **MEF2C** in **AML chemoresistance** (#436)
 - Study role of MCL-1 in ABT-199 (BCL-2 inhibitor) resistance, also biomarker (#1081)
 - Disrupt protein expression important for ROR-1/Wint interactions in B-CLL, possible target for monoclonal antibodies (#349)
 - Identify mutated genes to be involved in AML chemoresistance (#600)


CRISPR Cas and physiopathology of MPN

- > JAK2V617F frequently found in MPN
- DNMT3 methylates DNA residues leading to transcriptional repression and is mutated in 15% of MPN type MF
- > Mouse HSPC \rightarrow use CRISP-CAS9 to
 - Disrupt DNMT function and
 - Knock in JAK2V617F allele
- > DNMT3dysf in JAK2V617F HSPC
 - Increases more immature stem cell features (self-renewal capacity)
 - Upregulation pathways controlling cell cycle progression, oncogenesis, DNA damage
- > DNMT3dysf in JAK2V617F HSPC \rightarrow irradiated mice
 - Panmyelosis + thrombocytosis → myelofibrosis
- > \rightarrow better understanding of mechanisms promoting advanced disease in MPN

#794

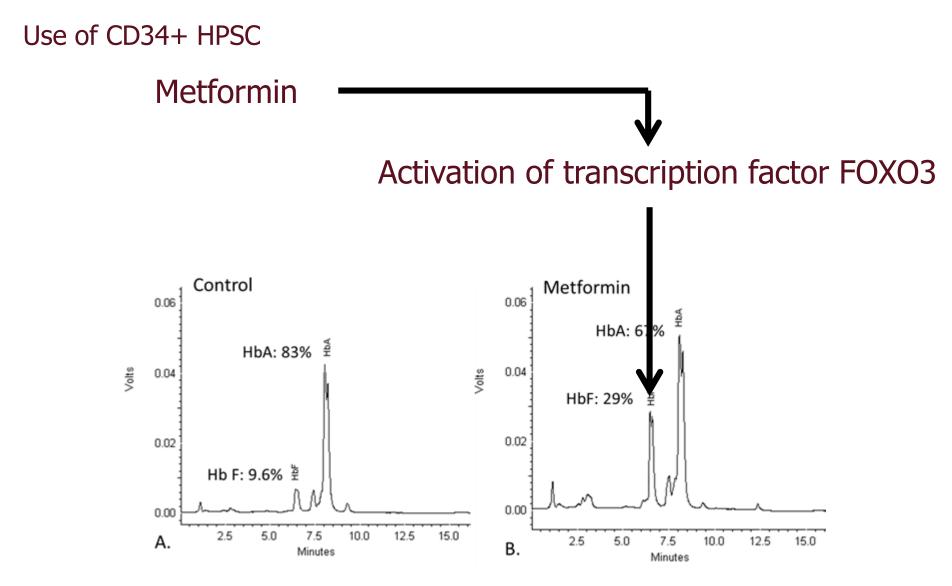
CRISPR oral abstracts


Perform genome-wide CRISPR library screens ("functional genomics") to compare cell populations (e.g. malignant vs non-malignant, primary versus metastatic, ..)

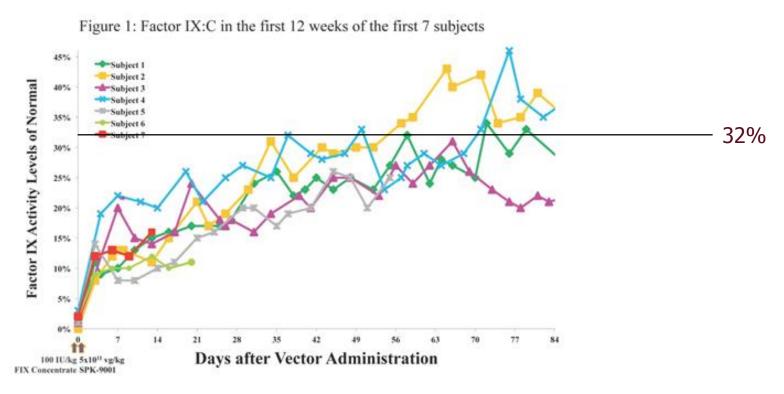
- Explore potential new targets in regulating tumor dissemination and metastasis in myeloma (#1137)
- Compare primary and metastatic clones to identify key regulators (EGR3 and ATF3) of dissemination in myeloma (#799)

SUSTAIN trial: anti-selectin in sickle cell disease

Second Sickle Cell–Related Pain Crisis


First Sickle Cell–Related Pain Crisis

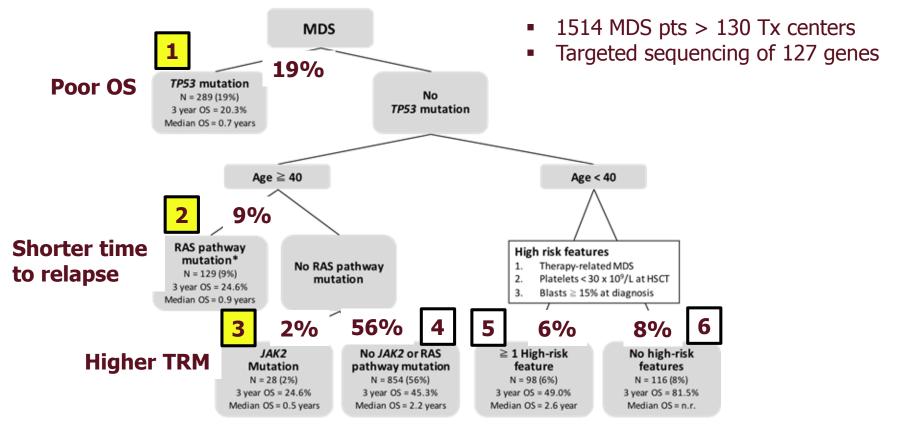
- P-selectin = adhesion molecule on activated endothelial cells and plts involved in leucocyte rolling on vessel wall
- Crizanlizumab = anti-P-selectin
- Multicenter phase II trial, monthly IV, n= 198 pts
- Overall 1 vs 3 crises per year in treated patients


Ataga et al. NEJM dec 2016

#001

Metformin in sickle cell disease

Gene therapy for hemophilia B



- Adeno-associated virus mediated gene transfer
- 12% FIX levels required (cfr previous gene therapy levels: 5%)
- SPK-9001 = bioengineered AAV capsid with liver specific tropism
- FIX Padua = X 8 activity
- Stable +/- 32% FIX concentrations
- 2/9 had cytotoxic anti-capsid immune responses, no inhibitor
- FIX pophylactic infusions stopped in 4 patients, 1.200.000 USD savings

#003

Precision medicine in MDS

Multivariable prognostic model for MDS alloSCT

* RAS-TK pathway: NRAS, KRAS, CBL, PTPN11, NF1, RIT1, KIT, BRAF, FLT3

#069

Chrysalis trial: FLT3 inhibition in R/R AML

- Gilteritinib = novel highly selective FLT3/AXL inhibitor
- Phase 1/2 clinical trial "first in human"
- N= 252 advanced AML (194 confirmed FLT3 mutations)
- Diarrhea and/or fatigue in 15%
- ORR = 49% in FLT3 mutated pts, median duration = 5 mths

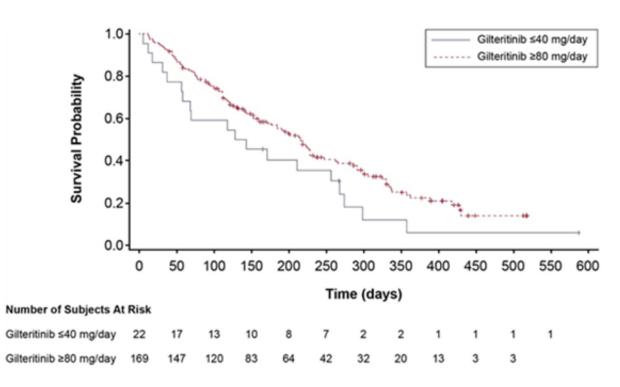
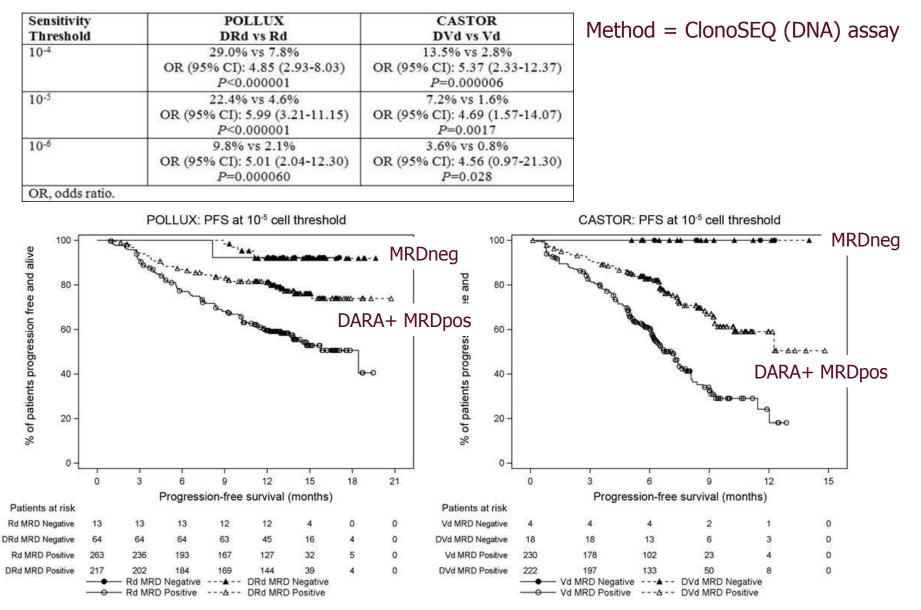
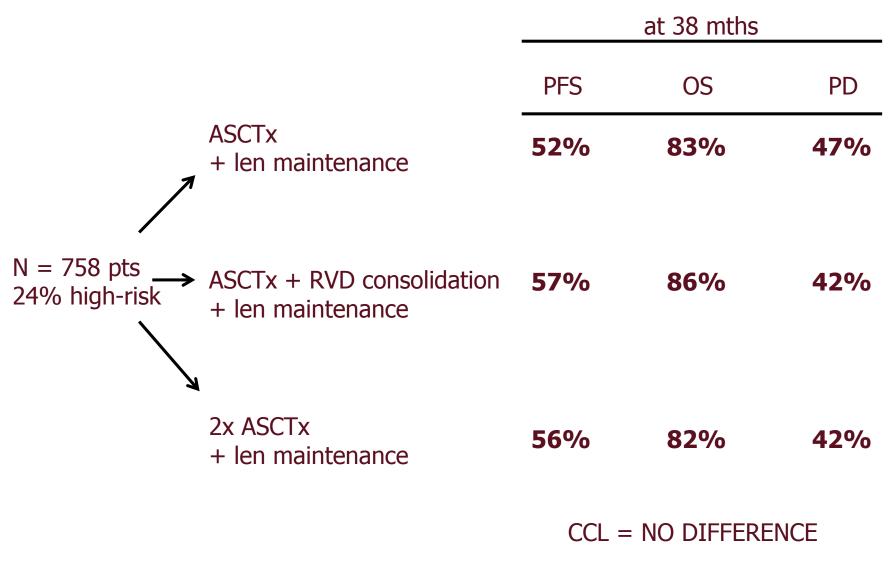
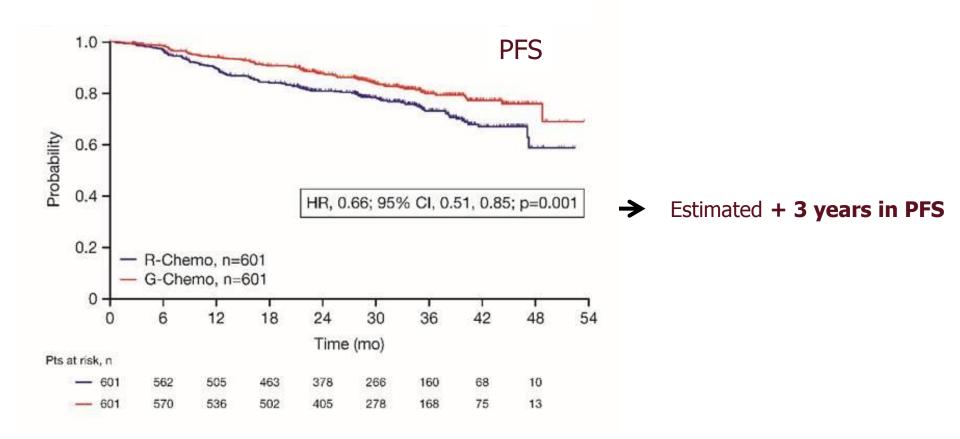



Figure: Overall Survival in FLT3^{mut+} Patients Treated with <80 mg or ≥80 mg Gilteritinib


#1069

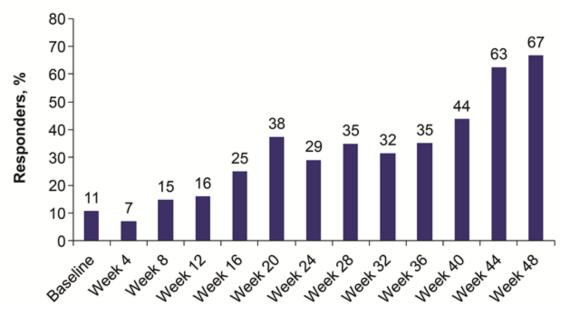
Daratumumab and MRD in relapsed MM

#246


Autotransplantation in MM

GALLIUM study: obinotuzumab vs rituximab

- Follicular NHL stage III/IV or stage II bulky
- N= 1202
- Benda 57%, CHOP 33%, CVP 10%
- More AEs but similar SAE



#006

Ibrutinib in steroid refractory CGVHD

- N =42 pts
- Median duration of CGVHD prior to therapy = 13.7 mths
- 1-3 prior regimens
- ORR = 67% (21% CR, 45% PR)
- 48% had sustained responses > 32 weeks
- Fatigue 57%, diarrhea 36%, muscle spasms 29%, nausea 26%, bruising 24%
- Grade 3/4 AE > 3pts: pneumonia, fatigue, diarrhea
- SAE 52% (infections)
- 5 discontinuations for progressive CGVHD

Figure 2. Proportion of Responders Requiring Corticosteroid Doses <0.15 mg/kg/d Over Time

Mission Beach San Diego