

19th Post-ASH Meeting 58th ASH San Diego, California Red blood cells disorders

Béatrice GULBIS

LHUB-ULB

Take home message?

Education program:

Single-dose intravenous iron for iron deficiency: a new paradigm *Michael Auerbach and Thomas Deloughery*

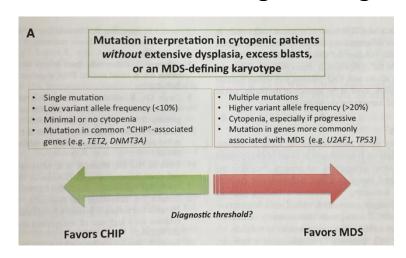
- Vit B12
 - From IM to oral administration
- Iron
 - From long duration oral to single-dose IV iron administration

Agenda

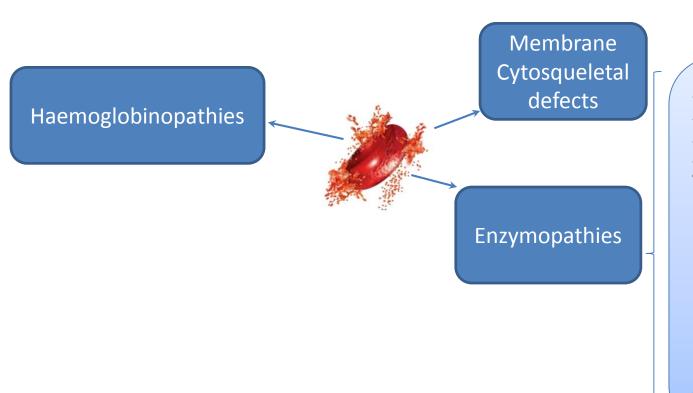
- Diagnosis
- From research to new therapeutic options
- Gene therapy: where are we?
- Share of experiences, innovation

Editorial

- When One Diagnosis Is Not Enough
 - Kym M. Boycott, M.D., Ph.D., and A. Micheil Innes, M.D.
 - N Engl J Med 2017; 376:83-85<u>January 5, 2017</u>DOI: 10.1056/NEJMe1614384
- An accurate diagnosis is essential for effective medical management; in the case of rare genetic disease, it also guides genetic counseling. Nevertheless, clinical assessments and conventional genetic testing lead to a diagnosis in less than half of patients.

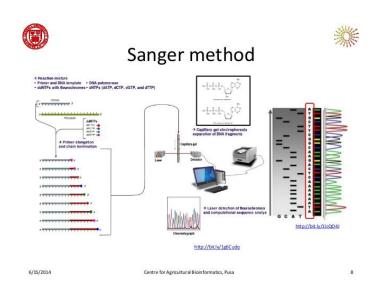

Education program:

New challenges in evaluating anemia in older persons in the era of molecular testing *David P Steensma*


✓ Efforts to explain « unexplained » anemia: possibility of MDS? Panel of 98 genes/ exons focused on haematologic malignancies

> ABL e2-e10 BCOR e2-e15 CALR e9 CSF1R e22 CUX1 e1-e21

...



Hereditary haemolytic anaemia

Acetylcholinesterase Adenosine deaminase Adenylate kinase Aldolase γ -Glutamylcysteine synthetase Glucose phosphate isomerase Glucose-6-phosphate dehydrogenase Gluthathione reductase Glutathione synthetase Hexokinase Phosphofructokinase Phosphoglycerate kinase Pyrimidine-5'-nucleotidase Pyruvate kinase Triosephosphate isomerase

- Hereditary haemolytic anaemia
 - Phenotype (Clinical, laboratory tests, ...)
 - Genotype: focus on one gene or even one exon

- Gene panel « Mendeliome »
 - Paper No: 2433 « Using a next generation sequencing panel to discover the obscure causes of hereditary hemolytic anemia » A. M. Agarwal Br J Haematol. 2016 Sep;174(5):806-14.
 - Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. Int J Lab Hematol. 2016 Dec;38(6):629-638.

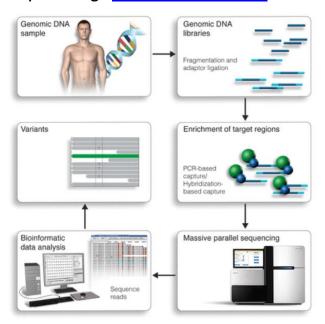
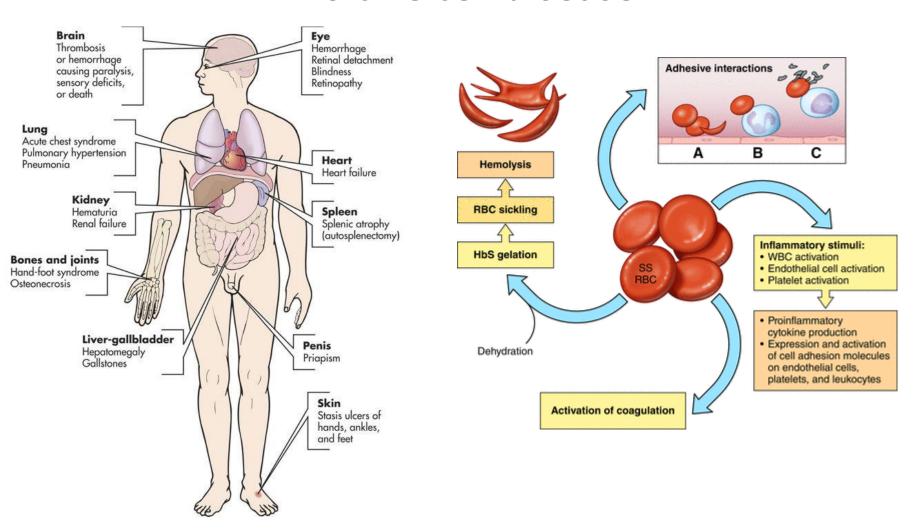


Table II. Genes included in the panel.


 Unexplained or doubtful diagnosis haemolytic anaemia?

➤ A panel of 28 genes or more

Gene			OMIM		
symbol	Gene name	Transcript	gene	Disorder	Inh
ADA	Adenosine deaminase	NM_000022	608958	ADA deficiency	AR
AK1	Adenylate kinase 1	NM_000476	103000	AK1 deficiency	AR
ALDOA	Aldolase A	NM_000034	103850	ALDOA deficiency	AR
ANK1	Ankyrin 1	NM_000037	607008	Spherocytosis	AD/AR
CYB5R3	Cytochrome b5 reductase 3 (DIA1)	NM_000398	613213	Methaemoglobinaemia type 1 Methaemoglobinaemia type 2	AR
EPB41	Erythrocyte membrane protein band 4.1	NM_004437	130500	Elliptocytosis	AR
EPB42	Erythrocyte membrane protein band 4.2	NM_000119	177070	Spherocytosis	AR
G6PD	Glucose-6-phosphate dehydrogenase	NM_001042351	305900	G6PD deficiency	XL
GCLC	Glutamate-cysteine ligase, catalytic subunit	NM_001498	606857	GCLC deficiency, Hyperbilirubinaemia, Haemolytic Anaemia	AR
GPI	Glucose phosphate isomerase	NM_000175	172400	Acute/chronic haemolytic anaemia	AR
GSR	Glutathione reductase	NM_000637	138300	GSR deficiency	AR
GSS	Glutathione synthetase	NM_000178	601002	GSS deficiency	AR
HK1	Hexokinase 1	NM_000188	142600	Haemolytic anaemia	AR
NT5C3A	5'-nucleotidase, cytosolic IIIA	NM_016489	606224	NT5C3A deficiency, Haemolytic anaemia	AR
PFKL	Phosphofructokinase, liver	NM_002626	171860		AR
PFKM	Phosphofructokinase, muscle	NM_000289	610681	PFKM deficiency, Glycogen storage disease 7	AR
PGK1	Phosphoglycerate kinase 1	NM_000291	311800	PGK1 deficiency	XL
PIEZO1	Piezo-type mechanosensitive ion channel component 1	NM_001142864	611184	Xerocytosis (hereditary)	AR
PKLR	Pyruvate kinase (liver and RBC)	NM_000298	609712	PKLR deficiency, Haemolytic anaemia	AR
SLC4A1	Solute carrier family 4, anion exchanger, member 1, band 3	NM_000342	109270	Spherocytosis, Blood group variation, Anaemia, Stomatocytosis, Acanthocytosis Kernicterus (acute), Ovalocytosis	AD/AR
SLCO1B1	Solute carrier organic anion transporter family, member 1B1	NM_006446	604843	Hyperbilirubinaemia (rotor type), Rotor syndrome	AR
SLCO1B3	Solute carrier organic anion transporter family, member 1B3	NM_019844	605495	Hyperbilirubinaemia (rotor type), Rotor syndrome	AR
SPTA1	Spectrin alpha	NM_003126	182860	Elliptocytosis, Spherocytosis, Pyropoikilocytosis, Elliptopoikilocytosis	AD/AR
SPTB	Spectrin beta	NM_000347	182870	Elliptocytosis, Spherocytosis	AD/AR
TPI1	Triosephosphate isomerase 1	NM_000365	190450	TPI1 deficiency	AR
UGT1A1	UDP glycosyltransferase 1 family, polypeptide A1	NM_000463	191740	Crigler-Najjar syndrome 1 & 2, Hyperbilirubinaemia (unconjugated), Gilbert syndrome	AR
UGT1A6	UDP glycosyltransferase 1 family, polypeptide A6	NM_001072	606431	UGT1A6 deficiency	AR
UGT1A7	UDP glycosyltransferase 1 family, polypeptide A7	NM_019077	606432	UGT1A7 deficiency	AR

Agenda

- Diagnosis
- From research to new therapeutic options
- Gene therapy: where are we?
- Share of innovation

RBC dehydration

HSCT

Free Heme Free Hb

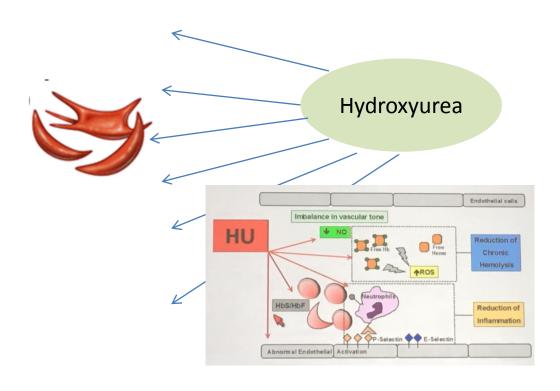
Adhesive interactions

Hydroxyurea

RBC transfusion

Inflammation

Activation coagulation


RBC dehydration

Free Heme Free Hb

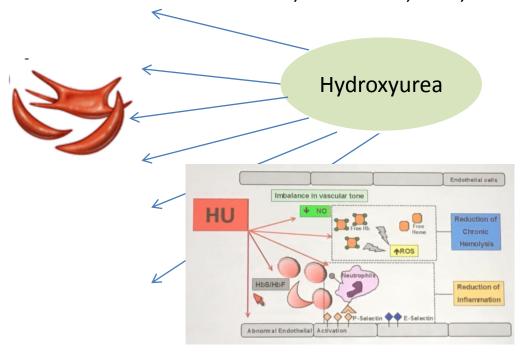
Adhesive interactions

Inflammation

Activation coagulation

RBC dehydration

Free Heme Free Hb


Adhesive interactions

Inflammation

Activation coagulation

It works for everyone who takes it every day...

Hydroxyurea Adherence for Personal Best in Sickle Cell Treatment (HABIT clinical trial) Dedicated information, home visit, SMS, ...

RBC dehydration

Free Heme Free Hb

Adhesive interactions

Inflammation

Activation coagulation

Paper N° 317 Kuo KHM Comprehensive structured transition program with dedicated navigator reduced lost follow-up and improved medication adherence ... *Transition navigator*

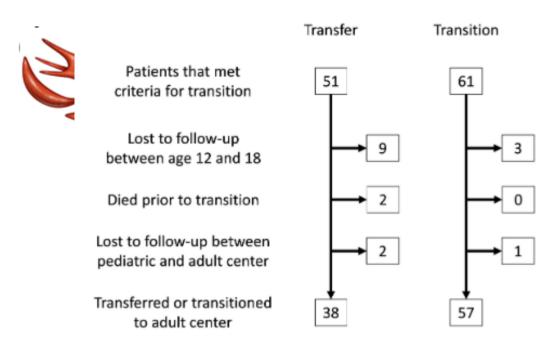
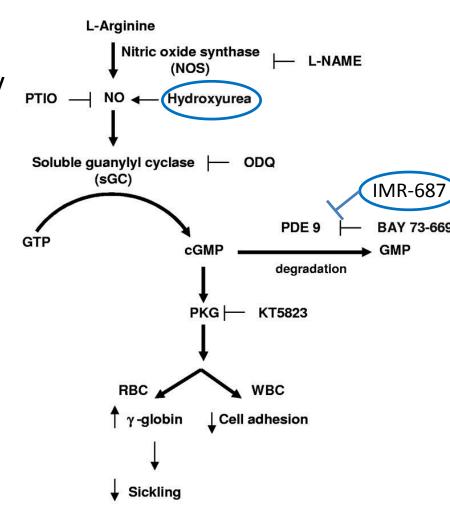
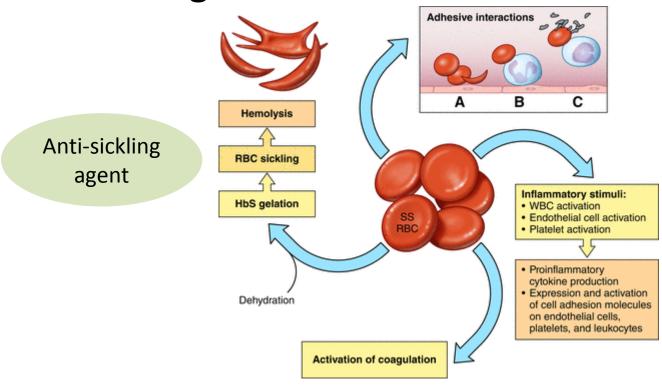



Figure 1: Patient flow diagram through the transfer/transition process

Hypothesis:

target the same biochemical pathway as for HU but

- Not neutropenic, mutagenic,
 or teratogenic, and no
 impact on embryogenesis
- Animal models
- Ongoing trial on healthy volunteers



- New treatments for SCD, why?
 - Shorten the course of acute vaso-occlusive events
 - Prevention of adverse events related to vasculopathy

— ...

- Improvement of quality of life
 - Pain
 - Length of hospital stay
 - ...

New targets

Anti-sickling drug

Hemoglobin-modifying and anti-sickling agents				
Dose-Escalation Study of SCD-101 in Sickle Cell Disease	NCT02380079 Phase 1	SCD-101	Ongoing	Invenux; SUNY- Downstate Med Ctr
Safety Study of MP4CO in Adult Sickle Cell Patients	NCT01356485 Phase 1	MP4CO	Complete	Sangart
Study of SANGUINATE™ Versus Hydroxyurea in Sickle Cell Disease (SCD) Patients	NCT01848925 Phase 1	Sanguinate	Complete	Prolong Pharmaceuticals
Study of SANGUINATE™ In the Treatment of Sickle Cell Disease Patients With Vaso-Occlusive Crisis	NCT02411708 Phase 2	Sanguinate	Ongoing	Prolong Pharmaceuticals
A Study of the Efficacy and Safety of ICA-17043 (With or Without Hydroxyurea) in Patients With Sickle Cell Anemia.	NCT00040677 Phase 2	Senicapoc (ICA-17043)	Complete	lcagen
A Stratified Sickle Event Randomized Trial (ASSERT)	NCT00102791 Phase 3	Senicapoc (ICA-17043)	Terminated (lack of efficacy)	lcagen
A Study Evaluating the Long-Term Safety of ICA-17043 in Sickle Cell Disease Patients With or Without Hydroxyurea Therapy	NCT00294541 Phase 3	Senicapoc (ICA-17043)	Terminated	lcagen
A Single Dose Study of the Safety, Blood Levels and Biological Effects of Aes-103 Compared with Placebo in Subjects With Stable Sickle Cell Disease	NCT01597401 Phase 1	Aes-103	Complete	Baxalta US
Evaluation of Different Dose Regimens of Aes-103 Given for 28 Days to Subjects With Stable Sickle Cell Disease	NCT01987908 Phase 2	Aes-103	Terminated	Baxalta US

Anti-sickling drug

Hemoglobin-modifying and anti-sickling agents				
Dose-Escalation Study of SCD-101 in Sickle Cell Disease	NCT02380079 Phase 1	SCD-101	Ongoing	Invenux; SUNY- Downstate Med Ctr
Safety Study of MP4CO in Adult Sickle Cell Patients	NCT01356485 Phase 1	MP4CO	Complete	Sangart
Study of SANGUINATE™ Versus Hydroxyurea in Sickle Cell Disease (SCD) Patients	NCT01848925 Phase 1	Sanguinate	Complete	Prolong Pharmaceuticals
Study of SANGUINATE™ In the Treatment of Sickle Cell Disease Patients With Vaso–Occlusive Crisis	NCT02411708 Phase 2	Sanguinate	Ongoing	Prolong Pharmaceuticals
A Study of the Efficacy and Safety of ICA-17043 (With or Without Hydroxyurea) in Patients With Sickle Cell Anemia.	NCT00040677 Phase 2	Senicapoc (ICA-17043)	Complete	lcagen
A Stratified Sickle Event Randomized Trial (ASSERT)	NCT00102791 Phase 3	Senicapoc (ICA-17043)	Terminated (lack of efficacy)	lcagen
A Study Evaluating the Long-Term Safety of ICA-17043 in Sickle Cell Disease Patients With or Without Hydroxyurea Therapy	NCT00294541 Phase 3	Senicapoc (ICA-17043)	Terminated	lcagen
A Single Dose Study of the Safety, Blood Levels and Biological Effects of Aes-103 Compared with Placebo in Subjects With Stable Sickle Cell Disease	NCT01597401 Phase 1	Aes-103	Complete	Baxalta US
Evaluation of Different Dose Regimens of Aes-103 Given for 28 Days to Subjects With Stable Sickle Cell Disease	NCT01987908 Phase 2	Aes-103	Terminated	Baxalta US

Anti-sickling drug

Hemoglobin-

Dose-Escal

Safety Study

Study of SA Patients

A Study of Hydroxyurea)

A Stratified

A Study Eva Disease Patier

A Single Do

Aes-103 Com Disease

Evaluation

Subjects With

Botanical drug; Mechanism?
Phase 1B dose escalation
Primary Outcome Measures:
Safety, tolerability, and dose limiting toxicities of escalating doses

FU: 6 weeks, frequency and severity of adverse events, laboratory assessments as compared to baseline

assessments as compared to baseline **26 patients:** stable SCD,

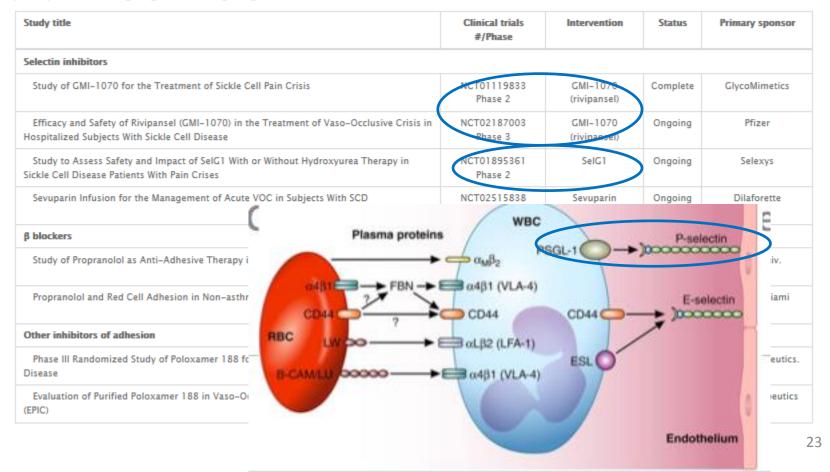
no HU (6 M), no transfusion (90 days) **Results:** no significant change in

haemolysis

Clinical benefit: pain, fatigue, sleep,

ulcer healing

9	SCD-101	Ongoing	Invenux; SUNY- Downstate Med Ctr
5	MP4CO	Complete	Sangart
5	Sanguinate	Complete	Prolong Pharmaceuticals
8	Sanguinate	Ongoing	Prolong Pharmaceuticals
7	Senicapoc (ICA-17043)	Complete	lcagen
1	Senicapoc (ICA-17043)	Terminated (lack of efficacy)	lcagen
1	Senicapoc (ICA-17043)	Terminated	lcagen
1	Aes-103	Complete	Baxalta US
8	Aes-103	Terminated	Baxalta US


•••

101 Dec 3

Agents interfering with New targets RBCs-vascular Adhesive interactions adhesion events С Hemolysis Reversal of adhesion Anti-sickling mediated VO events RBC sickling agent Inflammatory stimuli: Blockade of adhesive HbS gelation WBC activation Endothelial cell activation RBC · Platelet activation mechanisms Proinflammatory cytokine production Modulation inflammatory Expression and activation Dehydration of cell adhesion molecules on endothelial cells. pathways platelets, and leukocytes Activation of coagulation Anti-PLTs Anti-coagulant

Reversal of adhesion mediated VO events

Recently completed and ongoing studies targeting adhesion

Reversal of adhesion mediated VO events

Recently completed and ongoing studies targeting adhesion

completed and ong	OIII
Study title	S
	Р
Selectin inhibitors	Ρ
Study of GMI-1070 fo	
	S
Efficacy and Safety of	Si
Hospitalized Subjects V	
Study to Assess Safet	_
Sickle Cell Disease Pation	D
Sevuparin Infusion fo	C
β blockers	1
Study of Propranolol	_
Propranolol and Red	R
	1
Other inhibitors of adl	
Phase III Randomized	(8
Disease	٧
Evaluation of Purified (EPIC)	А
(EFIC)	
	- 1.7

SelG1/SEG101 (Crizanlizumab)
Phase II SUSTAIN Study

Primary Outcome Measures:

Safety and effect on frequency of sickle cell-related pain crises

Double-blind, randomized, placebocontrolled, multicenter.

198 patients

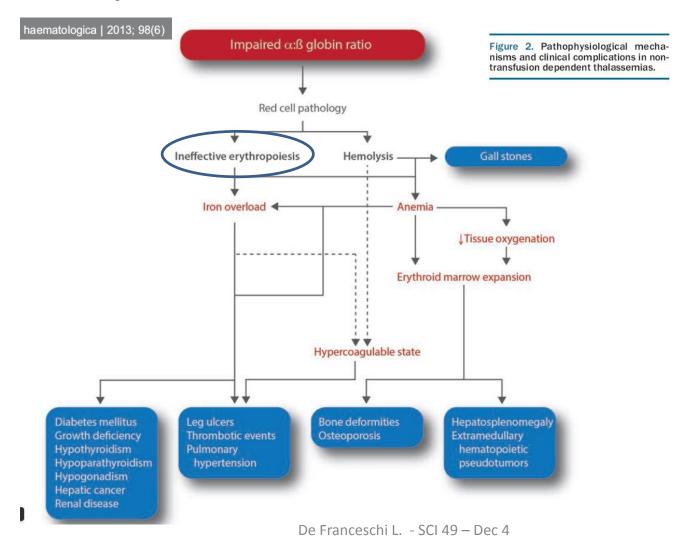
Results: 47 % reduction (1 y.; 5 mg/kg) 10% or more adverse events (arthralgia, diarrhea, pruritus, vomiting, and chest pain)

Ataga KI Plenary session 4 déc Paper N° 0001 N Engl J Med. 2016 Dec 3.

cal trials Phase	Intervention	Status	Primary sponsor
1119833 nase 2	GMI-1070 (rivipansel)	Complete	GlycoMimetics
2187003 nase 3	GMI-1070 (rivipansel)	Ongoing	Pfizer
1895361 nase 2	SelG1	Ongoing	Selexys
2515838 nase 2	Sevuparin	Ongoing	Dilaforette
1077921 nase 2	Propranolol	Complete	Duke Univ.
2012777 nase 1	Propranolol	Ongoing	Univ. of Miami
0004408 nase 3	Poloxamer 188	Complete	Mast Therapeutics. CytRx
1737814 nase 3	Poloxamer 188	Ongoing	Mast Therapeutics

24

)-819


Reversal of adhesion mediated VO events

Recently completed and ongoing studies targeting adhesion

Study title	Clinical trials #/Phase	Intervention	Status	Primary sponsor
Selectin inhibitors				
Study of GMI-1070 for the Treatment of Sickle Cell Pain Crisis	NCT01119833 Phase 2	GMI-1070 (rivipansel)	Complete	GlycoMimetics
Efficacy and Safety of Rivipansel (GMI-1070) in the Treatment of Vaso-Occlusive Crisis in Hospitalized Subjects With Sickle Cell Disease	NCT02187003 Phase 3	GMI-1070 (rivipansel)	Ongoing	Pfizer
Study to Assess Safety and Impact of SeIG1 With or Without Hydroxyurea Therapy in Sickle Cell Disease Patients With Pain Crises	NCT01895361 Phase 2	SelG1	Ongoing	Selexys
Sevuparin Infusion for the Management of Acute VOC in Subjects With SCD	NCT02515838 Phase 2	Sevuparin	Ongoing	Dilaforette
β blockers				
Study of Propranolol as Anti-Adhesive Therapy in Sickle Cell Disease (SCD)	NCT01077921 Phase 2	Propranolol	Complete	Duke Univ.
Propranolol and Red Cell Adhesion in Non-asthmatic Children with Sickle Cell Disease	NCT02012777 Phase 1	Propranolol	Ongoing	Univ. of Miami
Other inhibitors of adhesion				
Phase III Randomized Study of Poloxamer 188 for Vaso-Occlusive Crisis of Sickle Cell Disease	NC 100004408 Phase 3	Poloxamer 188	Complete	Mast Therapeutics. CytRx
Evaluation of Purified Poloxamer 188 in Vaso-Occlusive Crisis of Sickle Cell Disease (EPIC)	NCT01737814 Phase 3	Poloxamer 188	Ongoing	Mast Therapeutics

- Based on the knowledge of mechanisms involved in SCD adverse events
 - New treatments will be available
- Future = probably combination of drugs
 - HU + new drugs
 - Combination of drugs without HU
- One of the major outcome of clinical trials: improvement of patients' QoL

From research to new therapeutic options β -thalassaemia major/intermedia

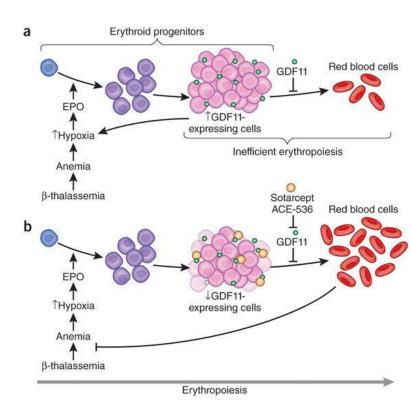
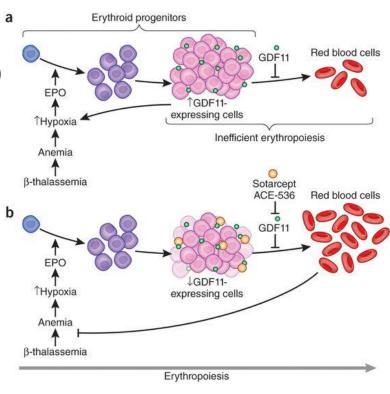

2017 Clinical trials update New treatments of β-thalassemia

Table 2. Currently Planned, Ongoing, or Recently Completed Clinical Trials of Novel Therapeutics in β -Thalassemia

Drug	Mechanism	Route	Phase	ClinicalTrials.gov	Status	Institution/Develo
Ruxolitinib (INC424)	JAK inhibition	Oral	2	NCT02049450	Open	Novartis Pharmaceutic
Sotatercept (ACE-011)	Ligand trap TGF-β superfamily	Subcutaneous	2	NCT01749540	Active not recruiting participants	Acceleron Pharma, Celgene Corporation
Luspatercept (ACE-536)	Ligand trap TGF-β superfamily	Subcutaneous	2	NCT01749540	Active not recruiting participants	Acceleron Pharma, Celgene Corporation
			2, extension study	NCT02268409	Active not recruiting participants	
			3	NCT02604433	Open	


From research to new therapeutic options β-thalassaemia major/intermedia

- Luspatercept (ACE-536)
- Phase 2 clinical trial
- Efficacy endpoints
 - $^{\text{Hb}}$ ≥ 1.0; 1.5 g/dL
 - Transfusion reduction: ≥ 20%; ≥ 50%
- Other endpoints
 - Safety
 - Liver iron (MRI)
 - Health-related QoL

From research to new therapeutic options β-thalassaemia major/intermedia

- Luspatercept (ACE-536)
- Phase 2 clinical trial adults (TD/NTD)
- Base study 3 M (n= 64)
- Extension study 5 years (n= 51)
- Results (n= 64)
 - Safe, well tolerated (Bone pain 30%; myalgia 17%)
 - NTD patients : sustained Hb \uparrow , \downarrow liver iron, \uparrow QoL
 - TD patients: sustained ↓ transfusions, ↓ liver iron
- Phase 3 study ongoing (NCT 02604433)

Agenda

- Diagnosis
- From research to new therapeutic options
- Gene therapy: where are we?
- Share of innovation

Gene therapy for β -thalassaemia: from the bench to beside

Hematology 2010, Education program book Dec 4-7, 2010: 445-

Table 1. Comparisons of different β - or γ -globin vectors studied successfully in mouse and human models of β -thalassemia

Vectors	Trans- gene	Erythreid enhancer	Key Findings	Key problems and possible solutions
TNS9*	β-globin	HS2-HS3-	Correction of anemia in thalassemia	Variable human β-globin
		HS4	intermedia mice and rescue of	expression in thalassemia
			lethality in thalassemia major mouse	major mice-indicates need
3 ⁸⁷ **	В ^{А-Т87Q}		model (Ref 25, 26)	for chromatin insulators
30.00	1-	HS2-HS3-	Correction of anemia in thatassemia	Multiple copies are
	globin	HS4	intermedia mice (Ref 27). High level	required for correction,
			expression of an antisickling β ⁸⁷	gene expression
			globin in human erythroid cells	surrounding the
			derived from cord blood progenitors and integration of vector near	integration sites were not
			potential oncogenes (Ref 48)	analyzed
D432β- ⁴ γ	y-globin	HS2-HS3-	Correction of anemia in thalassemia	Variable phenotypic
в чодр Т	/ globii	HS4	intermedia mice (Ref 28)	improvement in
			mornious moo (red 25)	thalassemia intermedia
				mice due to chromosomal
			Correction of anemia in thalassemia	position effects
mLARβΔγ	γ-globin	Extended	intermedia mice	Improved y-globin
V5*		HS2-HS3-	(Ref 30)	expression and reduced
		HS4		position effects
BG-I	β-globin	HS2-HS3-	Correction of human thalassemia	Low viral titers with full-
		HS4	major phenotype in vitro and in	length cHS4 insulator.
			immune deficient mice, (Ref 32) Reduced position effects and uniform	Identification of regions of
			expression (Ref 34).	cHS4 that impart optimal insulation and have
			Identification of minimal regions of	minimal effect on vector
			cHS4 necessary for optimal	titers.
			insulation (Ref 33)	uters.
T10	β-globin	HS1-HS2-	Correction of anemia in thalassemia	
	p 3	HS3-HS4.	intermedia mice with lower vector	
			copies (Ref 31)	
HS40-11	γ-globin	HS-40	Partial correction of mouse β-	γ-globin expression
			thalassemia intermedia with high	insufficient for correction
			transduction levels (Ref 18)	of thalassemia major
GLOBE	β-globin	HS2-HS3	Correction of β-thalassemia major by	High vector copies are
***			gene transfer in murine (Ref 29) and	required for correction of
			human thalassemia hematopoietic	thalassemia major mouse model.
			progenitors (Ref 42).	model.
			LV vector has high titers and β-globin expression comparable to that seen	
			by other groups despite lack of HS4.	

Status of clinical trials denoted by asterisks: *US trial planned using this vector or with minor modifications; **clinical trial ongoing in France; ***clinical trial planned in Europe

Open β -thal gene therapy trials

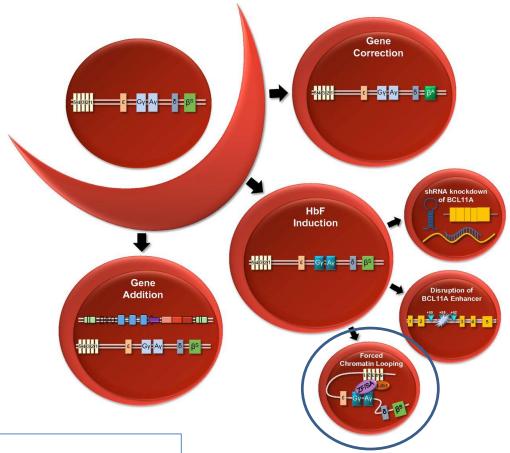
Transgene LV vector	Country	Sponsor	Start time	Results
β ^{A-T870} -globin BB305	France	Bluebird Bio	Jul 2013	$3\beta E/β^{\circ}$ - 1 $β^{+}/β^{+}$ - transfusion independent
β ^{A-T870} -globin BB305	USA, Thailand, Australia	Bluebird Bio	Aug 2013	18 Pts treated 8 β °/ β ° non transfusion indep., 60% decreased transf. Vol.
β-globin TNS9.3.55	USA	MSKCC	Jul 2012	4 patients treated Decrease in transf. Requirement = 1
β-globin GLOBE	Italy	Telethon Foundation	May 2015	

β-globin GLOBE gene therapy

2005: Development β -globin LVs

2008:

2010: Correction of Thal. Patients' cells


2012: Mapping splice sites; exploring new HSC source in thal. Patients

2014:
Protocol,
Ethical
Committee

β-globin GLOBE gene therapy

- 7 patients presented
 - -4 < 18 years
 - 26 to 460 days post gene therapy
 - All alive and well
 - Early haematological engrafment
 - Primary endpoits of safety achieved
 - 3 patients evaluable after 6-12 months post GT
 - 3/3 significant transfusion reduction and improved QoL
 - Discontinuation of chelation therapy
 - 4 pediatric patients with preliminary efficacy

Strategies for gene therapy for SCD

Pre-clinical:

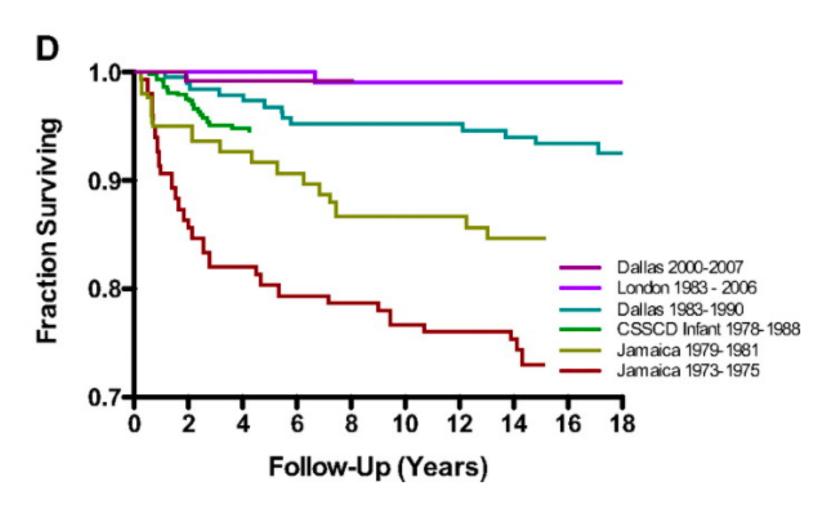
Humanized SCD mice (9% γ-globin Rhesus Macaques

Plenary session - Blobel GA

Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers Blood 2016 128:1139-1143

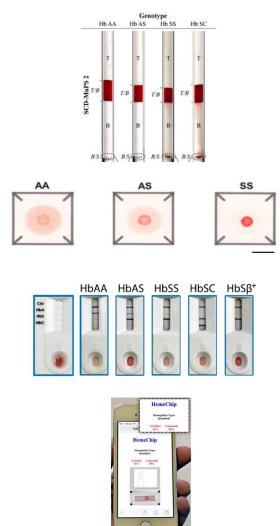
Open SCD gene therapy trials

Modified from Negre O. et al Hum. Gene Ther 2016

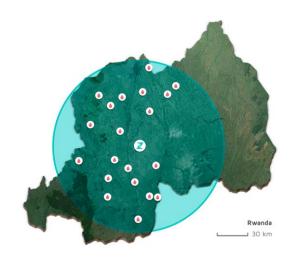

Transgene LV vector	Country	Sponsor	Start time	Results
β ^{A-T870} -globin BB305	France	Bluebird Bio	Jul 2013	Ongoing: 5-37 years 1 patient treated 47% \(\beta \text{T87Q-globin} \) Clinical benefit
β ^{A-T870} -globin BB305	USA	Bluebird Bio	Aug 2014	7 Pts treated 0.1 – 1.2 HbA ^{TB/Q} g/dL
βAS3-globin βAS3-FB	USA	UCLA	Jul 2014	Open (adults): 2 patient treated
Y-globin sG-bG	USA	Children's Hospital Med. Center Cincinnati	Jul 2014	Open (adults): Recruting

Agenda

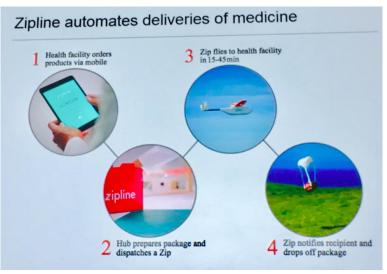
- Diagnosis
- From research to new therapeutic options
- Gene therapy: where are we?
- Share of experiences, innovation


Global perspective of SCD Neonatal screening

Blood 2010 115:3447-3452



Lower-ressources areas Access to diagnosis: POCT for SCD


Novel diagnostic testing methods						
AMPS	Density based test to separate Hb in different density fluids	Identifies Hb S and Hb A	Inexpensive, done at the point of care	Interpretation is more difficult, Less reliable results, difficult to distinguish HbSC disease		
Paper-based Sickle test	Microfluidic assessment	Identifies Hb S and A and C and company has a separate test that can identify Hb F	Inexpensive, done at the point of care, reliable diagnosis of HbSS disease, easily performed by non-skilled personnel	Requires a scanner for final results, can be difficult to distinguish HbAS (trait) from HbSC, test could be altered in different humidities		
Sickle SCAN	Lateral flow assay	Distinguishes Hb A, Hb S, Hb C	Reliably identifies HbA, HbS, and HbC, easily performed by non-skilled personnel, easily interpreted, rapid test at the point of care	More expensive than the other point of care tests above. Does not identify hemoglobin F. Limit of detection of Hb A is 2%		
HemeChip	Micro- elecrophoresis assay	Distinguishes Hb F, S, C, A, and D	Reliable, able to distinguish most types of sickle cell disease including compound heterozygotes	Requires a skilled interpretation, web-based image processing application for automated results		

Lower-ressources areas -Access to treatments Drone delivery systems for blood products

Rinaudo K. Dec 5

41

ASH – Red blood cells disorders Take home messages

- Diagnosis and treatments
 - From the bench to the patient's bed
 - From research to QoL
- Share of knowledge and technological innovations to explore answers to challenges in lower-ressources areas

BEST of ASH...

